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Abstract

This paper compares the performance of two recently developed algorithms and methods for peak alignment of first-order NMR data of
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omplex biological samples. The NMR spectra of such samples exhibit variations in peak position and peak shape due to varia
ample matrix and to instrumental instabilities. The first method comprises an alignment of spectral segments with linear interpo
hift correction to accommodate correspondence between a target and a test spectrum by a beam search or genetic algorithm
ethod is based on peak picking and needle vector representation of the NMR data with subsequent breadth-first search to es

orrections between the target and the test spectrum.
The two proposed peak alignment methods and their respective merits are discussed for a real metabonomics application. Bo
ethods have been shown to enhance the interpretability of the resulting multivariate models, thereby increasing the prospect
nd following the onset of subtle biological changes reflected in the NMR data.
2005 Elsevier B.V. All rights reserved.
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. Introduction

NMR has many attractive features, making it a useful
ool both for quantitative and qualitative analysis. NMR and
attern recognition techniques are indispensable combina-

ion tools frequently employed in systems biology and in
he pharmaceutical industry. To exploit the full informa-
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eedle Representation; PARS, Peak alignment by Reduced Set mapping;
C, Principal Component; PCA, Principal Component Analysis; PLS-DA,
artial Least Squares-Discriminant Analysis; SWA, Segment-Wise Align-
ent
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tion content of NMR data acquired on the complex
tems found in these research areas, various multivariate
analysis methods based on variance mapping have bee
plemented[1–6]. The common denominator for all of the
methods is the necessity of proper data pre-processing
to data analysis. Several approaches are available tha
with un-desired spectral artefacts, e.g. multiplicative s
ter correction[7] for baseline correction, orthogonal sc
ter correction for removal of unwanted variances[4,8] and
corrections for relative intensity variations such as nor
ization, mean-centring and autoscaling. However, the
ation in the abscissa has been dealt with to a lesse
tent.

If NMR peaks are un-aligned, any variance-mapp
model generated will exhibit spurious artefacts, ma
it more complex, more difficult to interpret and possi
misleading[9]. Consequently, the usefulness of the res

731-7085/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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achieved will decrease. Examples of problems and artefacts
originating from misaligned NMR signals have previously
been reported[5,6,10–14]. From a multivariate point of view,
it is interesting to note that any NMR peak originating from
identical analytes should (between samples) be a rank-one
peak: i.e. symmetric (Lorenzian) with identicalx position
and FWHM (full width at half maximum). If this is not the
case, any deviations from this ideal will be interpreted by the
model as mappable variance and will thus contribute to the
model, even though the significance of the variance is less
pronounced.

To overcome the peak shift problem in NMR, different
approaches have previously been suggested, of which the
predominant method is integration of predetermined spec-
tral segments, i.e. bucketing, typically 0.04–0.07 ppm wide
[1–4]. The bucketing approach deals with the peak shift prob-
lem but ruins the resolution of the acquired data and will
certainly confound variance contributions from small peaks
with variance contributions from large peaks in the same
bucket. This makes multivariate detection of small variances
(peaks) virtually impossible if they are in the same bucket
as larger variances. Furthermore, one main advantage of the
peak alignment methods over bucketing is interpretability.
The loadings from the multivariate analysis will reveal the
peaks responsible for the clustering, as is clearly shown in
[6].
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2. Theory and methods

2.1. NMR data

The metabonomics NMR data fully described in reference
[6], were utilized for evaluation of the proposed method per-
formances of the peak alignment methods. The data consist
of urine spectra from two groups each of 6 rats: one con-
trol group orally dosed with water and one group dosed with
citalopram (positive control for phospholipidosis). The rats
were dosed once a day for 14 days and urine samples were
collected on days–5 (pre-dose, two occasions), 1, 3, 7, 10
and 14. The samples were buffered (0.2 M phosphate solu-
tion) and centrifuged (13,000 rpm for 10 min) prior to1H-
NMR analysis on a Bruker DRX600 instrument working at
600.13 MHz. A suppression of the water signal was achieved
using pre-saturation during relaxation delay and mixing time
with a shaped pulse for selective saturation. One of the 84
resulting1H-NMR spectra is shown inFig. 1.

Comparing two urine spectra from the same class in the
data set will reveal many differences. Various background
matrices reflecting the varying urine concentration levels in
the samples will influence different peaks in various ways.
This may result in some peaks differing from one spectrum to
another, although they are chemically and analytically equal.
The magnetic field homogeneity was automatically adjusted
f tions
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More refined alignment methods (than bucketing)
MR data have been reported, one example being p

inear fit (PLF), a method outlined by Vogels et al.[15].
LF automatically picks out segments in an NMR spect
f sized depending on the peak frequency and shifts t
points left and right. Each possible and relevant com
ation ofd and s is tried until the sum of squared diffe
nces between the spectrum and the target is minim
ther approaches, such as the one outlined by Brown
toyanova[10], perform automatic removal of frequen
hifts in NMR spectra by using PCA to determine the m
lignment in a single peak across a series of spectra.
ethod has been extended and applied to in vivo N

pectra by Witjes et al.[16], and has been recently fu
her developed and applied to high-resolution spectral
14].

It is hard to ascertain the quality of the results when al
ent of first-order real data is performed, the reason b

hat no other data (as in second-order data) exist to g
r validate the alignment. A target, e.g. one spectrum,
e chosen for the alignment and the elucidation can on
ade by comparisons with other existing techniques su

ucketing.
In this paper two different approaches to peak alignm

ublished in 2003[6,17], are compared with respect to
ualitative class analysis of metabonomics samples. Th
act of the alignment methods is critically examined w

he aligned data are modeled by multivariate methods su
rincipal component analysis (PCA) and partial least squ
iscriminant analysis (PLS-DA)[18].
or each sample in this study, although due to the varia
n the background matrix between samples this could n
one with equal quality. Poor magnetic field homogen
ay give broad or asymmetric peaks. Other instrumenta

ameters, such as temperature, may also influence the
urthermore, different patterns of peaks will appear du

ndividual variations within a group of rats. The pH of
ample is a major source of variation in peak positions[12].
ven if the samples are buffered, small pH differences
e detected[1–3,19].

Samples from the same day should cluster together
ay clusters should also move away from the control, ind

ig. 1. Original1H-NMR spectrum of urine sample from rat dosed w
italopram, day 7 of study.
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ing the onset of the toxic event and the progress of the lesion.
Days 7–14 will be regarded a separate group since it is most
likely that the responses have reached a steady state after 6
days. The observed differences between the groups of spectra
will probably be traceable back to the metabolites stemming
from the xenobiotic. Further analysis and identification of the
detected peaks has not been pursued in this paper.

The acquired FID was zero-filled to yield 65,536 data
points per spectrum and a reduction, down-sampling, of data
to some extent will not result in loss of information, although
the traditional bucketing at 0.04–0.07 ppm (typically result-
ing in ∼250 data points) gives a rough reduction. The two
peak alignment methods presented here reduce the spectral
data in two conceptually distinct ways. The segment-wise
peak alignment method reduces spectra after the peak align-
ment with a bucketing approach and the appropriate size of
the buckets are tried out and evaluated. PARS is initiated with
and highly dependent on a peak-detection algorithm resulting
in a sparse or needle representation of spectra, which reduces
data to an arbitrary choice of resolution.

2.2. Segment-wise peak alignment

The segment-wise peak alignment (SWA) can be de-
scribed as a segmented non-peak picking approach, with shift
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Fig. 2. Contour map of the cross-correlation of the citrate-peak area
(2.84–2.32 ppm) in metabonomics NMR spectra, which represents two seg-
ments in the segment-wise peak alignment algorithm, before (A) and after
(B) alignment. The diagonal line marks where the contours of the peaks from
the two spectral segments should meet when they are aligned, as seen in (B).

The optimal correction of segments is carried out using
genetic algorithms. An extension of this segmented approach,
based on the beam search algorithm, is also presented here
[20].

2.2.1. Segment-wise peak alignment by a genetic
algorithm

Genetic algorithms (GAs) constitute a family of opti-
mization methods introduced by John Holland[21]. They
can be viewed as an evolutionary optimization process in
which a population of candidate solutions to a problem
orrection and linear interpolation to accommodate co
pondence between target and test spectrum. The targe
rum is chosen as the spectrum supposed to reflect all po
eaks, i.e. a spectrum from a dosed rat, in this case the

rum shown inFig. 1. Each spectrum will comprise uniq
eaks or artefacts, found only in one or a few spectra;
ver, if the segments in the alignment are chosen so
e wide enough, a pattern in the segment will be recogn
etween the target and the sample and one occasiona
ill thus not influence the evaluation measure. The siz

his possible peak as well as the evaluation function du
he alignment will matter. Also, the maximum possible ra
f shifting and interpolation are enclosed to avoid misal
ents in such cases.
The previously described peak alignment by geneti

orithms[6] involves dividing spectra into several segme
minimum size of the segments being predetermined

ry segment is shifted sideways and stretched or sh
y linear interpolation to fit a corresponding section of

arget spectrum. To avoid damaging peaks during the
entation, points with minimum intensity of both the sp

rum for alignment and the target spectrum are autom
ally determined to be positioned in a low-intensity a
f the data (within a predetermined data window) to a
ffecting the subsequent data analysis. This means th
ry segment will have a unique size depending on the

ral topography and will also have a unique numbe
dded or removed points governed by the alignment
ithm. One example of SWA of two segments is show
ig. 2.
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evolves over a sequence of generations. During each gen-
eration the fit of the solutions is evaluated. A better solu-
tion will have a higher probability of surviving and breed-
ing as the GA proceeds. This means that not all possible
solutions are evaluated, the best solutions in a set of candi-
date solutions being favored while the GA proceeds. Com-
prehensive treatments of GAs can be found in references
[21–23].

The application of GAs to the alignment problem is done
by allowing the parameters of the shifting, stretching and
shrinking of a sample segment to evolve in an evolutionary
manner to give the best fit with the target. The fit is evaluated
as the correlation coefficient between the target and the sam-
ple. When all segments in the test spectrum are aligned, the
segments are reassembled to form a reconstructed, aligned
spectrum[6].

2.2.2. Segment-wise peak alignment by a beam search
algorithm

To speed up the evolution of the alignment algorithm
described above, Lee and Woodruff[20] proposed a beam
search algorithm. This turns out to perform at least as well
as the proposed genetic algorithm, though about seven times
faster. Beam search is a heuristic search technique where
a number of nearly optimal alternatives (“the beam”) are
examined[24]. Initially, a set of likely solutions is cre-
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2.3. PARS–peak alignment by reduced set mapping

The PARS method exploits possibilities of sparse or “nee-
dle” representation (NR) and uses a fast tree-search algorithm
with early pruning of alignment solutions, i.e. the spectral
representation of the peaks is transformed into a sparse vec-
tor of zeros with peak maximum intensity found at thex-axis
locations (ppm or frequency) corresponding to the peak max-
ima (seeFig. 3).

The NR is well suited for analysis by, for instance, breadth-
first search (BFS) algorithms, making the method fast. The
method relies on using one spectrum or some other represen-
tative shape within the data as the target and then evaluating
combinations of sets of restricted, possible corrections of the
unaligned data (test sample) to minimize a global combina-
tion search. The NR-mapped representation of the data is
subjected to a BFS search to yield a correction scheme and
the corrections found are made to the NR of the data. Fur-
thermore, the algorithm used in this paper uses the intensity
information as guide for the assessment of the best solution
in the search space. The NR further opens the way for other
interesting possibilities such as using recursively updated tar-
get vectors, i.e. the method assesses the currently aligned test
spectrum for un-matched (un-aligned) peaks not present in
the target. The new peaks are then subsequently inserted in
the target to yield an updated target feature. In this way the
t pre-
v ture
u tation
a tion.
T lysis
p del
(
p el.

F edle
r nt by
r

ted on the edge of a pre-determined search radius
ubsequently evaluated. The algorithm then assigns
r more new candidate solutions by selecting thek best
teps from the current trial solution(s) wherek is the
arametric input beam width. For each loop of the a
ithm, the radius is reduced until a stop criterion is m
he best solution of the end population is then finally
orted.

.2.3. Further development of the SWA method
Interpolation of spectral segments may introduce a ch

n peak area. To ascertain its influence on the data ana
his part of the algorithm was excluded. Excluding the
erpolation will give a lower correlation coefficient betwe
pectra but preserve the peak area information. Further
he results of class separation depending on the type of s
lgorithm (beam search or genetic algorithm) were s

ed.
Since rat urine NMR data is relatively noisy, it was

umed that appropriate bucketing after peak alignment w
implify the data but not decrease the latent information
ent. Bucketing in this case will, as in previous studies[1–4],
educe differences in data due to instrumental and b
round matrix differences, but can now be performed
uch narrower buckets since the peak shifts do not ha
e accounted for. The appropriate sizes of the buckets

ried out and compared to classical bucketing with 0.04
er bucket. The algorithms for the work with the SWA met
ere implemented in Matlab[25] and the code is availab
pon request from the authors.
arget reflects information about all the spectra that have
iously been aligned. The “recursive target update” fea
sed here is one of the strengths of the NR represen
nd circumvents the problem of target spectrum selec
he NR representation is also interesting from a data ana
oint of view since the variable domain of resulting mo
loadings) is annotated by thetrue ppm shiftof the NMR
eaks, thereby simplifying the interpretation of the mod

ig. 3. A segment from the original NMR spectrum (positive) with the ne
epresentation (negative for visualization) used in the peak alignme
educed set mapping, PARS.
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The main reason for using this alignment method is that the
spectra can be aligned at an arbitrary resolution. It should be
noted that the method presented here differs slightly from the
original one reported[17]. In this work we used the NR both
for shifting the dataandalso for the subsequent data analysis.
The NR representation has pronounced advantages since any
differing FWHMs or shim problems (between-sample) will
effectively be avoided.

The NMR data were transformed and aligned using the NR
at a resolution of 0.004 ppm (2500 data points/NMR spec-
trum [0–10 ppm]), which is slightly larger than the practical
working resolution of the NMR spectrometer in question.
PARS was invoked using intensity information. The mis-
match penalty was invoked using a Harrington-type of de-
sirability function[26] where the match error was expressed
as:

Sd =
( |px − pt|

2w

)Ploc

(1)

Sl = Mw

( |Ix − It|
max([Ix, It ])

)Prel
(

max([Ix, It ])

Imax

)Pabs

(2)

Stot = Sd + Sl (3)

whereSd (Eq.(1)) is the penalty for the (mis)location,px and
pt are the locations of the sample and target peak, respectively,
w the search window andP the exponent (weight) for the
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method[6], where one target spectrum is assumed to reflect
all peaks of interest and is therefore chosen as a target for
all the spectra in the study, as well as in PARS[17], where
one spectrum is chosen as the start for the alignment accord-
ing to the “recursive target update”. When interpreting the
data with nominal classes, we could also use this class infor-
mation. All the spectra in one class may be aligned to one
chosen target in its own class, e.g. as in Andersson et al.[27].
To classify an unknown sample with this method, this sample
must be aligned to each class-target spectrum separately and
the probability of belonging to that class must be calculated
after alignment, e.g. by SIMCA[28]. The interpretation with
all classes in one multivariate model will not be valid in this
case.

2.5. Comparison of SWA and PARS

Since the two methods for alignment described above dif-
fer conceptually, it is difficult to arrive at a fair compari-
son between them. Here, the classification is evaluated af-
ter the peak alignment has been performed. This is done by
computing the distance between classes of spectra using the
measure of class separation (described below) and evaluat-
ing the interpretability in a multivariate space. PCA was used
as the method of compression/projection for generating the
reduced data space for interpretation, and PLS-DA[18,29]
w re the
d s from
t ribed
a d the
c

2
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t nor-
m ir of
c hich
t The
m imum
M d the
c h pair
o as the
m ation
M in
M

2
and

t single
g roup
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ocation penalty. Likewise,St (Eq. (2)) is the penalty for th
ntensity,IxandIt are the intensities of the test and target p
espectively,Prel andPabs are the weights for the relati
nd absolute intensity part of the penalty,Imax the maximum

ntensity for the set in question (target and test) and, fin
w the weight balance for the intensity/location penalty.

enalty for each possible match is then calculated by Eq(3).
The data were aligned usingPloc = 1,Prel = 1,Pabs= 0 and

w = 1. These parameters gave the most straightforwar
imple implementation and were not further optimized.
aximum allowed alignment distance wasw = 0.1 ppm. The
lignment resulted in an 84× 2500 matrix to be modeled b

he multivariate analysis methods.
The peak alignment of the data was performed using

ARS algorithm with an in-house written code for Mat
25].

.4. Target spectrum

In any peak alignment method a target must be cho
nd various alternatives are possible. When the same

s used for all the spectra in a data set, all the data may be
ratively represented by score plots from multivariate ana
f the whole data set that show differences between gr
f spectra, assuming that peaks appearing from the sam
tance appear at the same position in thex-direction of the
pectra after the alignment. An unknown sample woul
ligned to the previously chosen target and projected

he multivariate model space (loadings) for visual inter
ation of the resulting scores. This is the case in the S
t

-

as applied as a supervised classification method whe
istance between the groups was measured. The result

he two different types of peak alignment methods desc
bove are also compared to using the full raw spectra an
lassical approach of bucketing.

.5.1. The measure of class separation
The quality of the alignment was evaluated by proj

ng the entire data set into the multivariate models PCA
LS-DA. From the resulting score vectors, two vectors sh

ng a good separation between classes were chosen
his space each class was approximated by a bivariate
al probability distribution. The boundary between a pa

lasses is defined as the hypersurface (curve in 2D) on w
he probability densities of the two classes are equal.
easure of class separation is calculated as the min
ahalanobis distance between the class boundary an

lass centre. Since there are two such distances for eac
f classes, the shortest distance of them all was chosen
easure of class separation. For simplicity, the abbrevi
CS is used below[30]. All calculations were performed
ATLAB [25].

.5.2. Data pre-treatment
From the NMR study, all the samples from control rats

he samples from day–5 (pre-dose) were selected as a
roup, the control group. Samples from the citalopram g
day 1, day 3 and days 7–14) represent three dosed g
he NMR spectra were area-normalized to equal area (
eak excluded) and centred to zero mean prior to multiva
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modeling. The resulting spectra from PARS were autoscaled
(to unit variance) within variables. One outlier in the spectral
raw data due to instrumental error was detected and excluded.
Another outlier was detected by visual inspection of the first
two PCA scores after PARS had been applied; it was excluded
on the basis that it differed from the group with approximately
10 standard deviations.

3. Results and discussion

3.1. Segment-wise peak alignment

Fig. 4 shows the results of the PLS-DA classifications.
Each plot illustrates how different segment sizes for the buck-
eting after alignment compared to the classical bucketing of
raw spectra influences the distances between the different
dosed groups and control. The peak alignment result from
the beam search and the genetic algorithm are here com-
pared, together with the influence of linear interpolation. For
day 1 with 512 or more than 8192 buckets, excluding the
interpolation in the peak alignment clearly shows the best
separation. This is probably due to loss of area information
in the interpolation step. The rather “noisy” results from day
1 may be due to the fact that the group is heterogeneous be-
c days
3 rimi-
n s 512
b rate
i uced
d may

be considered to be the “real” resolution. It is also noteworthy
that all the alignments were repeated with exactly the same
results.

From this investigation one case was chosen for further
analysis by PCA and PLS-DA. Since the interpolation step
in the alignment did not improve the class separation in all
cases, and the beam search algorithm works about seven times
faster with results equal to the genetic algorithm; the beam
search peak alignment with only shift correction was hence-
forth used. These calculations will take about 2 s for a metabo-
nomics NMR spectrum of 65,536 data-points, partitioned in
about 100 segments, on a PC with a processor of 2.4 MHz
and 512 MB RAM. According to these results, the number of
buckets should be 512 from days 1–3 but 286 according to
the best results from days 7–14. To reduce the risk of loosing
information, 512 buckets were used in the following PCA
and PLS-DA analysis.

It should be noted that other search algorithms (than beam
search) might be better suited to finding the optimum peak
alignment in this one-dimensional search (sideways move-
ment).

3.2. Comparing SWA and PARS

The main difference between the two methods for peak
a eaks
a gical
i the
S eaks
m other
h peak,

F n grou for
e /bucke ctra (deno
a les fro p.
T nd day the three plot
r g sidew ays
s with s
ause of the rats having different response rates. For
–14, any alignment method results in better group disc
ation, compared to the raw data, if the bucketing exceed
uckets. It is notable that no significant difference at any

n class discrimination is detected when the data are red
own to 8192 buckets, which, according to this analysis,

ig. 4. The measure of class separation denotes the distance betwee
ach analysis, PLS-DA having been evaluated at 128; 286 (0.04 ppm
s 65,536 buckets). The control samples in the study are all the samp
he dosed samples are represented by samples from day 1, day 3 a
epresent: no peak alignment (×), beam search peak alignment includin
hifting and interpolation ( ), and peak alignment by genetic algorithm
lignment is the peak picking. In the PARS method the p
re defined, whereas in the SWA method the morpholo

nformation in the spectrum is preserved. One risk with
WA is that the peaks are not defined and parts of the p
ay be damaged if a segment is moved too far. On the
and, there is no need to define the appearance of a

ps after PLS-DA (2 PLS components). Thex-axis denotes the number of buckets
t); 512; 1024; 2048; 4096; 8192; 16,384; 32,768 buckets and full speted
m control group (days−5 to 14) and samples from day−5 from the dosed grou
s 7–14, respectively in the dosed group. The four different graphs ins
ays shifting of segments only (©), beam search peak alignment with sidew

ideways shifting and interpolation ().
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but only to determine the minimum segment widths and the
maximum shifting allowed. The possible danger with peak
picking is that some peaks of importance may be missed or
that artefacts are detected as peaks.

One major advantage of PARS is the possibility to use au-
toscaling, which scales every variable (true peak) to unit vari-

ance. This will magnify the variances of small peaks, which
can be of major interest, and assist in the finding of these
peaks in the multivariate analysis. Autoscaling on bucketed
or full spectra, peak-aligned or not, will decrease the dis-
tances between groups in the analysis since noisy buckets are
put on the same scale as buckets containing information.

F
t
1
0
p

ig. 5. The left column depicts the best PCA scores plot from each data se
he measure of class separation (MCS) between all the classes: 0–1: contr
–7: day 1 to day 7–14; 3–7: day 3 to days 7–14; D depicts the MCS dista
.04 ppm/bucket, SWPA512: segment-wise peak aligned data (beam searc
eak alignment using reduced set mapping.
t reflected by the class separation and right column show distances by means of
ol to day 1; 0–3: control to day 3; 0–7: control to days 7–14; 1–3: day 1 to day 3;
nce, rawspec: raw data, rawspec286: “classical bucketing” with 286 buckets, i.e.
h algorithm and shift correction alignment only) bucketed to 512 buckets, PARS:
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Fig. 6. Scores of the first two PLS components from PLS-DA of control and dosed groups from day 7 to day 14 are plotted, PLS component 1 on thex-axis
and component 2 on they-axis. D depicts the MCS distance, rawspec: raw data, rawspec286: “classical bucketing” with 286 buckets, i.e. 0.04 ppm/bucket,
SWPA512: segment-wise peak aligned data (beam search algorithm and shift correction alignment only) bucketed to 512 buckets, PARS: peak alignment using
reduced set mapping.

The plots inFig. 5 show the possibility of separating all
groups from each other: control, day 1, day 3 and days 7–14,
after PCA analysis, using the MCS. These results will vary
with the representation—shown is the best scores plot from
the two PCs representing the best overall results ranked by
the MCS. The bar plots to the right indicate an overall bet-
ter separation between almost all classes when SWA is per-
formed. The mean MCS distances are 1.26, 1.10, 1.97 and
1.14 for raw spectra, classical bucketing, SWA and PARS,
respectively. The most important feature of these plots may
be their interpretability. In the segment-wise peak aligned
case, samples from day 1 are spreading in one direction sep-
arated from the directions obtained from the later days, a phe-
nomenon which may contain valuable information on early
formation of metabolites. Also worth noting is that bucket-
ing and peak alignment reduce a lot of variation, not related
to this analysis, which is explained by PC 1–3 in the raw
data. Another important observation in these plots is that no
information of interest seems to be destroyed or lost by the
peak alignment. With the classical bucketing, the separation
between dosed classes is indefinite, while SWA shows the
same pattern as in raw data but with a better separation of the
classes.

In Fig. 6the results from the PLS-DA analysis are given. A
good separation between the control group and dosed group
for days 7–14 is shown. However, PARS produces the best

results, followed by SWA, classical bucketing with 0.04 ppm
per bucket, and raw data, in that order, ranked by the MCS.

Differing numbers of buckets and projections of PCA
scores will show varying results as well as other distance
measures or evaluations. Several score representations and
different inter- and intra-group distance measures, such as
different combinations of Mahalanobis and Euclidean dis-
tances have been tried out and the proposed MCS captures
the information provided by the grouping of the scores. The
score sets in this work have been chosen to show the best
separation in each case and are considered to reflect the class
distances fairly.

4. Conclusions

The two dedicated peak alignment methods examined in
this work produce better results than classical bucketing or
raw data considering the measure of class separation (MSC)
of scores from PCA or PLS-DA. This is due to the removal of
variations originating from instrumental instabilities, a back-
ground sample matrix and preservation of the variability from
minor peaks. There are always risks of introducing errors
when manipulating spectra; however, for the two proposed
peak alignment methods, the advantages outweigh the disad-
vantages. Although it is hard to validate the alignment meth-
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ods by numbers derived from the spectral domain, we can
find no proof that the alignment methods destroy the latent
information in the data.

No attempt to interpret the origin of the observed class
separation has been made. The class differences can probably
be accounted for by the NMR signals reflecting the excretion
of the exogenous compound and its metabolites or by general
changes in metabolism due to acute toxicity.
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